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A low-dimensional model for simulating
three-dimensional cylinder flow
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We investigate the stability and dynamics of three-dimensional limit-cycle states in
flow past a circular cylinder using low-dimensional modelling. High-resolution direct
numerical simulations are employed to obtain flow snapshots from which the most
energetic modes are extracted using proper orthogonal decomposition. We show that
the limit cycle is reproduced very accurately with only twenty three-dimensional
modes. The addition of two-dimensional modes to the Karhunen–Loeve expansion
basis improves the ability of the model to capture the three-dimensional bifurcation,
including the discontinuity in the Strouhal number discovered experimentally.

1. Introduction
In this paper we construct a low-order dynamical system to simulate the three-

dimensional flow past a circular cylinder. From the practical point of view, such
models are useful for control applications, e.g. Balasubramanian et al. (2001). From the
theoretical point of view, it is interesting to investigate the existence and the accuracy
of such low-dimensional representations. The feasibility for flow model reduction
can be proved rigorously only for a few simple flows, see Robinson (2001), but
experimental and numerical evidence suggests that many complex flows exhibit low-
dimensionality and can potentially be described by approximate inertial manifolds,
see Deane et al. (1991), Cao & Aubry (1993), Ma, Karamanos & Karniadakis (2000)
and references therein for the cylinder flow. Several different approaches to reduced
modelling have been proposed for the cylinder flow, mainly in investigating the first
Hopf bifurcation but also covering other aspects, e.g. Sreenivasan, Strykowski &
Olinger (1987), Leweke & Provansal (1994), Albarede & Provansal (1995), Olinger
(1993). Here we are interested in the three-dimensional flow states, which are slightly
above the secondary instability. This regime was first modelled by Noack & Eckel-
man (1994) using a low-order spectral Galerkin system. A review of the physical
mechanisms in this range of Reynolds number was provided by Williamson (1996);
see also references therein.

In the numerical work of Noack & Eckelman (1994) a spectral tensor basis was
adopted, scaled appropriately with the boundary layer to reflect the Reynolds number
effect, and 189 modes were employed in their simulations. Although hierarchical (in
the index space) such modes are not directly related to the flow energetics. Our
objective is different: we aim to construct low-dimensional systems which are based
on the hierarchical most energetic flow scales with an order of magnitude reduction
in the required modes, i.e. based on ten to twenty modes. The approach followed in



182 X. Ma and G. E. Karniadakis

Deane et al. (1991) and Cao & Aubry (1993) for the two-dimensional cylinder flow
was based on empirical eigenfunctions derived by proper orthogonal decomposition
(POD). We will adopt the same procedure in the current work.

Proper orthogonal decomposition is a methodology that first identifies the most
energetic modes in an evolving system, and second provides a means of obtaining
a low-dimensional description of the system’s dynamics. Background material for
the POD approach can be found in the review article by Bekooz, Holmes & Lumley
(1993). Here we adopt the implementation based on the method of snapshots developed
by Sirovich (1987). POD has been used so far in conjunction with experimental
(e.g. Glezer, Kadioglu & Pearlstein 1989; Citriniti & George 2000; Arndt, Long &
Glauser 1997; Gordeyev & Thomas 2000; Delville et al. 1999) and numerical studies
(e.g. Deane et al. 1991; Sirovich 1987; Aubry et al. 1988; Rempfer & Fasel 1994;
Liakopoulos, Blythe & Gunes 1997).

We have employed spectral direct numerical simulation (DNS) to obtain detailed
snapshots of the flow for Reynolds number (based on cylinder diameter and free-
stream velocity) 150 to 200. The eigenmodes obtained are truly three-dimensional, i.e.
we have not assumed a Cartesian tensor-like decomposition along the homogeneous
spanwise direction. The dynamical systems are constructed based on a varying number
of these eigenmodes, from M = 6 to 40 as will be discussed in the next section, using
linear Galerkin projections. In addition, appropriate hybrid trial bases were sought
that accommodate the reverse transition, i.e. from the three-dimensional to two-
dimensional states.

2. Formulation of dynamical systems
2.1. Eigenspectrum and POD modes

The original data required for the construction of dynamical systems were obtained
by DNS based on spectral/hp element discretizations. The method and its validation
for cylinder flow for Reynolds number Re up to 5000 is described in Ma et al. (2000).
For the current simulations we used the smaller mesh consisting of 412 triangular
elements of spectral order seven, with eight Fourier collocation points along the span.
The length of the cylinder span was Lz/d = 4, where d is the cylinder diameter; it was
based on the critical length obtained in the Floquet analysis of Barkley & Henderson
(1996). We investigate the range Re = 180 ± 20 as we target the three-dimensional
limit cycle, the onset of which was obtained in Barkley & Henderson (1996) to be
at Rec = 188.5 ± 1.0. In the current simulations, we obtain the first limit cycle with
non-negligible spanwise velocity component at a slightly lower value, Re ≈ 185, which
is closer to the experiments of Williamson (1989), Hammache & Gharib (1991) and
Zhang et al. (1995). Specifically, both simulations and experiments reported in Zhang
et al. (1995) and the Floquet analysis of Noack & Eckelman (1994) show a critical
Reynolds number for the secondary instability around 170.

In order to obtain the most energetic eigenmodes from the DNS databases we
need to construct the covariance matrix of the velocity vector field correlating all
points in the domain. Assuming that the total number of points in space is n, then
the covariance matrix is n× n. For the three-dimensional simulations employed here
n ≈ 300 000 and thus it is impractical to work with such a big eigensystem. To
this end, we employ the snapshot method of Sirovich (1987), which we formulate as
follows:

Let V (x, t) be a time-dependent velocity field and U (x) its average, then we
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Figure 1. Normalized eigenvalues for three-dimensional flow past a cylinder at Re = 185.

decompose V as

V (x, t) = U (x) + u(x, t),

where u defines the perturbation velocity, which is represented by the Karhunen–Loeve
expansion

u(x, t) =

M∑
m=1

φm(x)am(t),

where φm(x) is the trial basis and am(t) the time-dependent coefficients. In the snapshot
method, am is the eigenfunction of the covariance matrix

Cp,q =

∫
Ω

u(x, tp) · u(x, tq) dx,

where

u = u(x, y, z)i + v(x, y, z)j + w(x, y, z)k.

The POD vector mode φ(x) is defined by

φ(x)m =

∫
am(t)u(x, t) dt. (2.1)

The above was put in matrix form and the eigenspectrum and corresponding eigen-
modes were obtained using standard LAPACK routines. The normalized POD modes
obtained are ‘numerically’ orthogonal, as they are perpendicular to each other within
at least 10−8 accuracy for the higher modes and 10−14 on the average, see Ma (2001).

The eigenspectrum computed at Re = 185 based on 40 snapshots is shown in
figure 1. The modes form pairs due to the closeness of the vortex street to a
travelling wave, similarly to the two-dimensional flow studied in Deane et al. (1991).
This is also reflected in the eigenmodes of each pair, which are phase-shifted with
respect to each other. A qualitative picture of the structure of the POD modes is
provided in figure 2 that presents the first, third, tenth and twentieth modes of the
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Figure 2. Contours of the w velocity component for mode (a) first; (b) third; (c) tenth,
and (d ) twentieth. Re = 185.

(a)
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Figure 8. POD simulations (system B). Spanwise vorticity Ωz at Re = 183 (a), and at Re = 185 (b).

spanwise velocity component w. These are three-dimensional, geometry-fitted global
eigenmodes, for which, unlike tensor-product expansions, it is not exactly predictable
how scale information is introduced, e.g. which Cartesian direction is refined as the
mode index increases. Similar patterns were obtained for the streamwise and cross-
flow components, see Ma (2001). Finally, we note that based on the energy decay
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shown in the eigenspectrum plot, it appears that at least the first six modes are
energetically significant and should be retained in the truncation of the system.

2.2. Galerkin projection

The dynamical systems are obtained by performing a Galerkin projection of the
incompressible Navier–Stokes equations onto the space spanned by the POD modes,
i.e. ∫

Ω

φm(x) ·
(
∂V

∂t
+ (V · ∇)V + ∇p− 1

Re
∇2V

)
dx = 0, (2.2)∫

Ω

φm(x) · (∇ · V ) dx = 0. (2.3)

The divergence-free equation (2.3) is satisfied automatically since the POD modes
are divergence-free by construction, i.e.

∇ · φm(x) = ∇ ·
∫
am(t)u(x) dt =

∫
am(t)∇ · u dt = 0,

where both the average field and fluctuations are also divergence-free.
Based on this, the pressure term drops out from the governing equations since∫

Ω

φm(x) · ∇p dx =

∫
Γ

p φ · n dx−
∫
Ω

(∇ · φm)p dx = 0,

where at the boundary Γ , we have imposed either p = 0 at the outflow, periodicity at
the side boundaries, and φ = 0 on the cylinder surface and inflow. More details can
be found in Deane et al. (1991) and Ma (2001).

3. Stability of low-dimensional models
The two-dimensional cylinder flow was studied in Dean et al. (1991); it was found

that six POD modes are sufficient to reproduce the flow dynamics, which was stable
for about 100 shedding cycles. Having obtained the three-dimensional modes we
have considered a similar problem for the three-dimensional flow targeting the first
(harmonic) limit cycle. In particular, we compared systematically two low-dimensional
systems: the first (system A) is constructed based on 40 POD modes at Re = 185;
the second (system B) is constructed by combining 20 modes extracted at Re = 185
and 20 modes extracted at a subcritical Reynolds number Re = 182. This hybrid
system can be constructed either by concatenating the two sets of snapshots at the
corresponding Reynolds number or by extracting the POD modes at each state and
subsequently orthonormalizing the entire set.

We have obtained low-dimensional models for M = 6, 10, 20 and 40 modes for both
systems A and B. The results with M = 20 for the system A are shown in figures 3
and 4 and correspond to Re = 185. A stable limit cycle is obtained for at least 500
convective times units (here plotted for 200 units), which corresponds to about 100
shedding cycles. The corresponding phase portraits, constructed by cross-plotting the
coefficients of high modes versus the first mode, are in excellent agreement with the
corresponding DNS data projected onto the 20 modes used in the low-dimensional
model. The simulation with M = 40 modes is almost indistinguishable from the
simulation with M = 20 modes for the first 15 modes. However, for higher modes
there is a noticeable difference as shown in figure 5, where the time history of the
twentieth mode is compared for the two truncations and also versus the DNS data.
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Figure 3. Variation of coefficients of different modes with time for system A.
M = 20 and Re = 185.
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Figure 4. Phase portraits of coefficients corresponding to higher modes versus the first mode for
system A. The last 35 shedding periods are plotted. The circles correspond to DNS data and the
lines to POD predictions. M = 20 and Re = 185.

Comparing system A with system B in figure 5 we observe that the expansion with 40
modes is almost identical; however, there are noticeable differences in the expansion
with 20 modes. Finally, the simulations with M = 6 and 10 converge to states
with smaller and larger amplitude, respectively, for the two truncations compared
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Figure 5. Comparison of the time history of the 20th mode of systems A and B for truncations
with 20 and 40 POD modes.
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Figure 6. Time history of spanwise velocity w at x/d = 2.55, y = −0.45, showing the convergence
trend at the subcritical Re = 183 for (a) system B (hybrid), and (b) system A.

to the DNS data. These new states exhibit about 10% differences from the DNS
data.

The hybrid system B exhibits similar behaviour as system A, i.e. it is stable and
converges to the correct limit cycle at Re = 185. In addition, it predicts correctly
the transition from the three-dimensional to a two-dimensional state as shown in
figure 6(a). In contrast, system A shows a very slow decaying of the spanwise velocity
component, plotted in figure 6(b). In fact, even at lower Reynolds number, e.g.
Re = 170, POD simulations based on system A show a very long transient and a
residual (finite) spanwise velocity even after a very long time integration (about 2000
shedding cycles). Another major difference between systems A and B is that the latter
predicts correctly the jump in the Strouhal number versus Reynolds number curve
in agreement with the experiments of Williamson (1988) and Hammache & Gharib
(1991). This is shown in figure 7, where the experimental results are also presented.
Specifically, the Strouhal peak predicted by POD (system B) is St = 0.183 at Re = 185
and St = 0.194 at Re = 183. This transition manifests also itself in the flow structure
of the near wake as spanwise modulation. Figure 8 shows iso-surfaces of spanwise
vorticity (Ωz); panel (a) corresponds to Re = 183, and (b) to Re = 185. The results
are based on POD simulation with system B composed of 40 hybrid modes.

Finally, at higher Reynolds number, systems A and B diverge. For example, POD
simulations at Re = 189 show a stable limit cycle for short time integration (about
five shedding cycles), but they diverge for the long time integration.
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Figure 7. Strouhal number versus Reynolds number. ◦, experiments of Williamson (1988); •,
experiments of Hammache & Gharib (1991); + (line), two-dimensional simulations of Barkley &
Henderson (1996); ?, current POD simulations. The vertical lines denote transitions obtained in
Barkley & Henderson (1996).

4. Discussion
We have simulated the three-dimensional limit cycle state in uniform flow past

a circular cylinder at Re = 185 using a low-dimensional Galerkin model. The trial
basis was constructed based on hierarchical modes extracted from DNS databases
following a POD procedure. Particular attention was paid on the construction of
a Karhunen–Loeve expansion that captures accurately both the limit cycle and the
transition to three-dimensionality. To this end, we demonstrated that a hybrid basis
consisting of both three- and two-dimensional POD modes representing nearby states
is the proper choice.

Unlike previous work in POD modelling, we did not incorporate any ad hoc eddy
viscosity models in order to stabilize the computations. The Galerkin models we
constructed based on 20 or more modes were sufficiently dissipative to result in stable
long-term dynamics that lasts a few hundred shedding cycles. This may be sufficient
from the practical point of view, e.g. in control applications. However, the question
remains if such severe truncations of the dynamical system are asymptotically stable,
i.e. for all times. The answer is not clear. We have seen, for example, for the flow we
studied here that after a long time a small divergence appears that eventually renders
the system unstable. If more modes are included the onset of divergence is delayed
but the same picture emerges.

We have also observed such long-term divergence for the two-dimensional flow,
where systematic studies are more affordable. However, in both cases a selective filering
based on the spectral vanishing viscosity method, see Karamanos & Karniadakis
(2000), stabilizes the simulation (consistent with the observation of Rempfer (1993)
that the ‘turbulent viscosities’ of the POD modes increase with their index). We have
also found that if a cylinder is inside a channel (internal flow) the long-term flow
dynamics is stable at all times without explicit filtering. Similarly, if the circular
cylinder flow is forced slightly, say with some small inflow oscillating component, the
corresponding dynamical system is stable without the incorporation of eddy viscosity.
Finally, another approach that has been effective in obtaining stable low-dimensional
systems, even for severe truncations, is based on nonlinear Galerkin projections, see
Jauberteau, Rosier & Temam (1997) and Ma (2001). The high modes are ‘enslaved’
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into the lower more energetic modes and provide sufficient dissipation for stable
long-term dynamics. We are still investigating these open issues and will report our
progress in a future publication.

This work was supported partially by ONR, NSF and DOE. The computations
were performed on the IBM SP3 at Maui High Performance Computing Center
(MHPCC), at the NCSA University of Illinois (Urbana-Champaign) and at the
Center for Scientific Computing & Visualization at Brown University.
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